

Emission Test Certificate

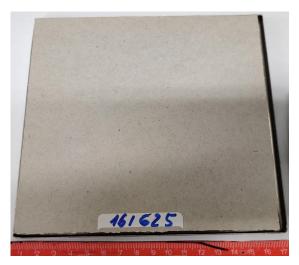
Tuesday 05th September 2023

Supplier	Etex Australia Pty Ltd (31 Military Road, MATRAVILLE, NSW 2036, Australia).
Manufacturer	Siniat Australia (91-99 Ajax Road, Altona, VIC, 3018, Australia)
Sample Description	Spanshield Plasterboard – 10 mm thickness
Date Tested	August 2023 (Tested by FORAY Laboratories – NATA Accreditation 1231)
Test Method	CDPH Ver 1.2: 2017: Standard Method for the Testing and Evaluation of Volatile
	Organic Chemical Emissions from Indoor Sources Using Environmental Chambers,
	Version 1.2: 2017 (Emission testing method for California Specification CA 01350)

Sample and Chamber conditions during the test period:

Temperature	22.6°C ± 0.4°C
Humidity	55% ± 3%
Chamber Volume	50 L
Chamber Flow Rate	0.842 L/min
Chamber Pressure	109.2 kPa
Product Loading	0.64 m²/m³
Air Exchange Rate	1.011 hr ⁻¹
Emission Collection Time	1480 min for formaldehyde and aldehydes and 121 min for Therma Desorption tubes VOCs.
Sample Surface Area	0.032 m ²
Exposure of sample in chamber	14 days (336 hours)

Test summary: The air samples were collected from the emission chamber at 336 hours for aldehydes and VOCs. The aldehyde gases were collected on DNPH-treated silica tubes (SKC 226-119) and analysed by Ultra High-Performance Liquid Chromatography (UHPLC). The VOC gases were collected on Tenax TA Thermal Desorption tubes and analysed by ATD-GC-MS as TO-17.



Emission Data:

California Specification CA 01350	<mark>Spanshield</mark> Plasterboard – 10 mm thickness			
TVOC Emission concentration Limit: <0.500 mg/m ³	TVOC Emission Concentration*: 0.011 mg/m ³			
Formaldehyde Emission Concentration Limit: <9 $\mu\text{g}/\text{m}^3$	Formaldehyde Emission Concentration*: 6 µg/m ³			
All other Target CREL VOCs and their emission rate are well below the maximum allowable concentrations in accordance with Table 4-1 of the standard method (please see it in Annex 1 below).				

The results above may be considered representative of the equivalent and lesser weighted product specifications that are made from the same raw material by Etex Australia Pty Ltd and these include Mastashield 10 and 13 mm, Soundshield 10 and 13 mm, Opal 10mm, and Curveshield 6 mm.

* The stated result was calculated from an emission rate applied to the Standard Private Office Model (Table 4-4) using 44.55 m² exposed wall and ceiling area, room volume of 30.6 m³, and ventilation rate of 0.68 hr⁻¹.

Spanshield Plasterboard – 10 mm thickness sample

Dr. Vyt Garnys PhD, BSc(Hons) AIMM, ARACI, ISIAQ ACA, AIRAH, FMA Managing Director and Principal Consultant

havis Oth

Travis Hale BSc (Biotechnology) Senior Consultant

Marane.

Dr. Tuan Duong PhD, B.Eng. (Chemical) Senior Consultant

Issue Date: 5/09/2023

Expiry date: 5/09/2028

P23040031

Annex 1: TVOC & Target VOC calculated concentration as Table 4-1 from Spanshield Plasterboard.

Sample ID	CAS number	Calculated Concentrations* (µg/m ³) 161265
Analyte		
TVOC (C ₅ -C ₁₇)	-	11
Acetaldehyde	75-07-0	<2.0
Benzene	71-43-2	<2.0
Carbon disulfide	75-15-0	<2.0
Carbon tetrachloride	56-23-5	<2.0
Chlorobenzene	10-90-7	<2.0
Chloroform	67-66-3	<2.0
1,4-dichlorobenzene	106-46-7	<2.0
1,1-dichloroethene	75-35-4	<2.0
N, N-dimethylformamide	68-12-2	<2.0
1,4-dioxane	123-91-1	<2.0
Epichlorohydrin	106-89-8	<2.0
Ethylbenzene	100-41-4	<2.0
Ethylene glycol	107-21-1	<2.0
Ethylene glycol monomethyl ether	110-80-5	<2.0
Ethyleneglycol monomethyl ether acetate	111-15-9	<2.0
Ethyleneglycol monomethyl ether	109-86-4	<2.0
Ethyleneglycol monomethyl ether acetate	110-49-6	<2.0
Formaldehyde	50-00-0	6.0
n-hexane	110-54-3	<2.0
Isophorone	78-59-1	<2.0
Isopropanol	67-63-0	<2.0
Methyl chloroform	71-55-6	<2.0
Methylene chloride	75-09-2	<2.0
Methyl <i>t</i> -butyl ether	1634-04-4	<2.0
Naphthalene	91-20-3	<2.0
Phenol	108-95-2	<2.0
Propylene glycol monomethyl ether	107-98-2	<2.0
Styrene	100-42-5	<2.0
Tetrachloroethene	127-18-4	<2.0
Toluene	108-88-3	<2.0
Tricholoroethylene	79-01-6	<2.0
Vinyl acetate	108-05-4	<2.0
Xylenes (m-, o- & p-)	108-38-3, 95-47-6, 106-42-3	<2.0

* The stated result was calculated from an emission rate applied to the Standard Private Office Model (Table 4-4) using a 44.55 m² exposed wall and ceiling area, a room volume of 30.6 m³, and a ventilation rate of 0.68 hr⁻¹.